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Four-wave mixing based 10-Gb/s tunable wavelength
conversion in dispersion-flattened microstructure fibers

Xia Zhang (% %), Xiaomin Ren (4#£8#), Zinan Wang (Z-F#),
Yongzhao Xu (#%41), Yongqing Huang (&4« #), and Xue Chen (K %)

Key Laboratory of Optical Communication and Lightwave Technologies, Ministry of Education,

Beijing University of Posts and Telecommunications, Beijing 100876

Received March 14, 2007

All-optical wavelength conversion of 10-Gb/s signal based on four-wave mixing is experimentally demon-
strated in a 30-m-long dispersion-flattened microstructure fiber with small positive dispersion. For an
average pump power of 26 dBm, the conversion efficiency was around —19.5 dB with the fluctuation less
than +1.4 dB, covering a conversion bandwidth of 20 nm. The eye diagram of the converted signal shows

good eye opening.
OCIS codes: 060.2330, 060.2310.

All-optical wavelength conversion is considered to be a
crucial technique in future high-speed dense wavelength-
division-multiplexed (DWDM) network!*. Among var-
ious wavelength conversion techniques, the use of the
four-wave mixing (FWM) in nonlinear optical fibers
would be one of the easiest and the most flexible ap-
proaches because of its simple configuration and trans-
parency to both bit rate and modulation format!?. The
relatively low nonlinearity presented by the dispersion-
shifted fiber (DSF) requires the use of long lengthf.
As a consequence it is difficult to control and stabilize
the conversion device. Also, the necessity of placing the
pump at or near the zero-dispersion wavelength of the
fiber to ensure phase matching may limit the flexibility
of the optical networks.

Microstructure fibers (MFs) are currently a topic of
high interest because of their unusual optical properties
which cannot be realized in conventional optical fibers!4.
MF's have central region of pure silica surrounded by a
lattice of air-holes in the cladding running along the fiber
length, and they offer design flexibility in controlling the
mode propagation properties by changing the size and
pattern of the air holes!®~7]. The design freedom offered
by the MF technology makes highly nonlinear MF very
suitable for wavelength conversion where the fiber pa-
rameters should be tailored to satisfy specific demands,
namely a flat dispersion profile and a high nonlinear-
ity. The low dispersion values of MF make it satisfy
the quasi-phase matching condition over a wide wave-
length range. FWDM-based wavelength conversion has
been demonstrated utilizing MF®=19 showing promis-
ing applications in DWDM networks.

In this letter, we report the wavelength conversion of
10-Gb/s signal using FWM in a dispersion-flattened MF
with low positive dispersion values. We show a conver-
sion efficiency of —19.5 dB for an average pump power
of 26 dBm and a conversion bandwidth of 20 nm. The
quality of the converted signal is monitored by eye dia-
grams.

The schematic of our experimental setup is shown in
Fig. 1. The signal beam at a fixed wavelength of 1550.05
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nm was modulated with a 2'® — 1 pseudorandom data
sequence at a data rate of 10 Gb/s and then combined
with the pump beam using a 3-dB coupler. The two
beams were then amplified using a high power erbium-
doped fiber amplifier (EDFA) with an average saturated
power of 26 dBm.

The fiber used in this experiment is a 30-m-long com-
mercial available dispersion-flattened high nonlinear MF
from Crytal-Fibre A/S (NL-1550-POS-1). The MF has a
nonlinear parameter of 11 W—1-km~! at 1550 nm and a
small positive dispersion of 0.5—1.5 ps/(km-nm) over the
range of 1480 — 1620 nm, as shown in Fig. 2. Also, the
MEF is spliced to standard single-mode fiber pigtails, lead-
ing to a total loss of 2 dB from connector to connector.

The states of polarization of both the signal and the
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Fig. 1. Schematic of the experimental setup. DFB: dis-
tributed feedback laser; PC: polarization controller; PWR:
optical power meter; FFP: fiber Fabry-Perot filter.
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Fig. 2. Dispersion curve of the MF used in experiment.
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Fig. 3. Measured output spectrum from the FWM-based
wavelength converter. C: converted signal; P: pump wave;
S: signal wave.

pump beams were optimized to ensure the highest con-
version efficiency. Furthermore, the differential group
delay (DGD) of the MF was measured to be 4 ps using
the Sagnac interference method, corresponding to a bire-
fringence of An = 4 x 107°. At the fiber output, the
converted signal was filtered out using a tunable fiber
Fabry-Perot filter with the 3-dB bandwidth of 0.8 nm.
The output was investigated using an optical spectrum
analyzer of 0.01-nm resolution and a 20-GHz photode-
tector together with a digital sampling oscilloscope.

We assessed the wavelength conversion performance in
the spectral domain. The output spectrum is shown
in Fig. 3. A strong FWM wavelength-converted signal
was observed at 1539.4 nm with the input signal and
the pump beams at 1550.05 and 1544.7 nm, respectively.
Both second- and third-order idler beams were also ob-
servable. The optical signal-to-noise ratio (SNR) of the
converted signal is found to be better than 30 dB in a
0.1-nm resolution bandwidth.

The conversion efficiency of wavelength converter is
defined as the ratio of output wavelength-converted sig-
nal power to the input signal power. The output power
can be written as['!]

Prwn = (YPyLest)? - Poexp(—al) -1, (1)

where P, and P; are the input powers of the pump and
signal waves, respectively, L is the fiber length, and « is
the attenuation coefficient. L¢gs is the effective interac-
tion length given as

Lot = (1 — e—aL)/a. (2)

1 is the FWM efficiency, which can be expressed as

B O42 e—aL o L
n= o L AR (1+4(1_e—aL)2 sin (Aﬁ§)>’ (3)

Af is the propagation constant difference written as
AL = Brwm + Bs —20p. [ indicates the propagation con-
stant. The propagation constant difference, also called
phase-matching factor, generally depends on fiber disper-
sion and wavelength separation. The solid line in Fig. 4 is
the theoretical simulation curve for the fiber used in ex-
periment when the average pump power is 26 dBm. The
measured conversion efficiency is also shown in Fig. 4.
It is clearly seen that the conversion efficiency is around
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Fig. 4. Conversion efficiency versus converted wavelength
when the average pump power is 26 dBm. The solid line is
the theoretical simulation result.
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Fig. 5. Eye diagrams of (a) original 10-Gb/s signal at 1550.05
nm and (b) the converted signal at 1540 nm.

—19.5 dB with the fluctuation less than +1.4 dB, cov-
ering a tunable bandwidth of about 20 nm. The experi-
mental results agree well with the theoretical curve.

For the eye diagrams, a 20-GHz bandwidth photodiode
was used in conjunction with a digital sampling oscillo-
scope with a 20-GHz electrical sampling module. Fig-
ures 5(a) and (b) show the eye diagrams of the 10-Gb/s
non-return-to-zero (NRZ) input signal (back-to-back) at
1550.05 nm and wavelength-converted output signal at
1540 nm. A good eye diagram of the converted signal
is obtained. A small amount of timing jitter and inten-
sity noise is observed from the eye diagrams. We be-
lieve that the intensity noise can be attributed to mod-
ulation instability, since the MF used in this experiment
lies in anomalous dispersion regime. The eye diagrams of
converted signal at different wavelengths were also mea-
sured. There is no obvious difference when the wave-
length of the converted signal is in conversion bandwidth.

MF's can be fabricated to have unusual dispersion and
nonlinearity characteristics by altering the size and ar-
rangement of the surrounding air holes. We have ex-
perimentally demonstrated a tunable wavelength con-
verter using FWM in a dispersion-flattened nonlinear
MF with small positive dispersion. A tuning range up
to 20 nm of the converted signal with —19.5-dB conver-
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sion efficiency and good flatness over 1541 —1561 nm has
been achieved. The results show that a highly nonlinear
and dispersion flattened MF with lower (even slightly
positive) dispersion is promising for wide-band wave-
length conversion applications in all-optical networks.
The researches on FWM-based wavelength conversion in
dispersion-flattened MF with different dispersion values
are in progress.
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